Optical Materials Fall 2014 Course No. 14:635:433 Department of Materials Science and Engineering Rutgers, The State University of New Jersey

Time: 3.20 - 4.40 pm, Tues & Thur Location: SEC 204, Busch Campus Instructor: Deirdre O'Carroll, CCR 218 Office Hours: Thur. 12 - 2 pm Contact: ocarroll@rutgers.edu

Description:

This course will describe the properties of important passive and active optical materials including glasses, crystals, polymers, semiconductors and metals. The first part of the course will introduce the fundamental issues such as optical transmission and reflection, the interaction of light and optical materials, and the materials chemistry and physics necessary to be able to interpret the basic optical properties of materials. Next, experimental measurement and theoretical simulation approaches used to determine optical properties of materials followed by sections on unique characteristics of individual classes of optical materials will be covered. Materials of interest will be crystalline, semiconducting, and glassy solids including passive optical polymers, oxide and fluoride glasses, inorganic semiconductor like Si, Ge and GaAs, organic optically active semiconductors, non-linear optical materials and new optical materials such as metamaterials and optical composites. For each material, there will be brief discussions on fabrication techniques and applications of the materials such as optical fiber communications, microscopy, display and lighting and optical sensing.

Objective:

The primary objective of the course is to provide an understanding of the origins and uses of the optical properties of materials. The student will be exposed to a quantitative interpretation of the fundamentals of the interaction of light with passive and active optical materials as well as general information on the applications of optical materials in optical engineering. A major objective of the course is to for students to learn how to apply course knowledge to solve real-world problems in a variety of optical engineering applications. The students should be prepared by the end of the course to work in industries employing enabling optical technologies or to continue in graduate school in more advanced optical materials research and development.

Prerequisites: none

Reference Texts (not required):

- <u>Photonics</u> by Amnon Yariv & Pochi Yeh, Oxford University Press, 6th Edition, New York, 2007.
- <u>Introduction to Modern Optics</u> by Grant R. Fowles, Dover Publications, 2nd Edition, New York 1989.
- <u>Materials Chemistry</u> by Bradley D. Fahlman, Springer, 2nd Edition, New York, 2011.

Course Materials:

Class lecture slides, summary sheets, reading materials and homework questions including relevant equations and diagrams will be posted on Sakai in conjunction with syllabus topics. The course instructor retains copyright to all lecture slides, summary sheets and homework questions posted on Sakai and these materials are not to be distributed by students to persons not registered for this course or to other media or websites without written permission from the course instructor.

Topics Covered:

Introduction to Light-Matter Interactions:

- Introduction; passive & active optical materials
- Electromagnetic radiation; Maxwell's Equations; quantum nature of light
- Origin of the dielectric constant: molecular orbital theory; band structure
- Optical constants; dispersion relations
- Absorption, transmission, reflection (Fresnel Equations), refraction, diffraction, emission, scattering (phonons, elastic, Raman, Brillouin), polarization
- Measurement and simulation of the optical properties of materials

Passive Optical Materials:

- *Glasses:* silicates, fluoride, chalcogenides, origin of color in glasses
- Polymers: optical constants, specialty optical applications, polarization
- Crystals: polarization, birefringence, waveplates, liquid crystals
- *Metals:* physical origin of the dielectric constant, reflectance, surface plasmons
- Passive optical components: lenses; optical coatings; mirrors; gratings
- *Optical waveguides*: thin films (slab); optical fibers; mode equations and profiles, mode cutoff

Active Optical Materials:

- Semiconductors: interband absorption; direct, indirect bandgap; Si, III-V; II-V
- Semiconductors: nanoscale phenomena, excitons, quantum confinement
- Semiconductors: organic semiconductors; small molecules; conjugated polymers
- Applications of active semiconductor optical materials: photodetectors, amplifiers (lasers), lighting, displays.
- Nonlinear optical materials: Nonlinear optical properties; gain materials; upconversion; harmonic generation, electrooptic materials
- *Plasmonics, metamaterials and photonic crystals:* optical frequency magnetic permeability, optical composites.

Assessment Type	Date	Information	Duration	% of Total Course Grade
Homework	Exact due date for each homework assignment will be specified upon assignment.	5 homework assignments will be given. One homework assignment will involve an optical simulation problem.	Throughout the course.	35 %
Exam 1	Oct. 7 th	Will cover all preceding lectures.	45 min.	15 %
Exam 2	Nov. 13 th	Will cover all lectures <u>not</u> covered by Exam 1.	45 min.	15 %
Final Exam	December	Will cover all lectures given during the entire semester.	90 mins.	30 %
Attendance	All semester	Attendance will be taken in each class and the attendance grade will be calculated based on your percentage attendance.	-	5 %

Tentative Class Schedule:

Sept. 2 rd 2014	Introduction; syllabus, prior knowledge quiz, passive and active	
	optical materials	
Sept. 4 th 2014	Homework 1 assigned.	
	Electromagnetic radiation; Maxwells equations; quantum nature	
	of light.	
Sept. 9 th 2014	Origin of the dielectric constant: Molecular orbital theory; band	
-	structure	
Sept. 11 th 2014	Optical constants; dispersion relations; absorption, transmission	
Sept. 16 th 2014	Homework 1 due. Homework 2 assigned.	
-	Reflection (Fresnel Equations), refraction, diffraction, emission,	
	scattering, polarization	
Sept. 18 th 2014	Measurement of the optical properties of materials	
Sept. 23 rd 2014	Simulation of the optical properties of materials	
Sept. 25 th 2014	Glasses	
Sept. 30 th 2014	Homework 2 due.	
	Polymers	
Oct. 2 nd 2014	Review	
Oct. 7 th 2014	Exam 1: Covers all lectures to date	
Oct. 9 th 2014	Homework 3 assigned.	
	Crystals	
Oct. 14 th 20140	Metals	

Oct. 16 th 2014	Application of passive optical components	
Oct. 21 st 2014	Optical waveguides	
Oct. 23 rd 2014	Homework 3 due. Homework 4 assigned.	
	Inorganic semiconductors	
Oct. 28 th 2014	Semiconductors: Nanoscale pheonmena	
Oct. 30 th 2014	Organic semiconductors	
Nov. 4 th 2014	Applications of active semiconductor optical materials	
Nov. 6 th 2014	Homework 4 due.	
	Applications of active semiconductor optical materials	
Nov. 11 th 2014	Review	
Nov. 13 th 2014	Exam 2: Covers all lectures not covered by Exam 1.	
Nov. 18 th 2014	Homework 5 assigned.	
	Nonlinear optical materials	
Nov. 20 th 2014	Plasmonics, metamaterials	
Nov. 25 th 2014	Metamaterials and photonic crystals	
Nov. 27 th 2014	Thanksgiving recess	
Dec. 2 nd 2014	MRS Fall	
Dec. 4 th 2014	Homework 5 due.	
	MRS Fall	
Dec. 9 th 2014	Review class	
~Dec 15 th	Final Exam: Covers all lectures	
(to be confirmed)		